
Unified Off-Policy Learning to Rank: a Reinforcement
Learning Perspective

Zeyu Zhang1 Yi Su2∗ Hui Yuan3 Yiran Wu4 Rishab Balasubramanian5

Qingyun Wu4 Huazheng Wang5∗ Mengdi Wang3
1University of Science and Technology of China 2Google Deepmind 3Princeton University

4Penn State University 5Oregon State University
zgkd2019zzy@mail.ustc.edu.cn yisumtv@google.com

{huiyuan, mengdiw}@princeton.edu {ykw5399, qingyun.wu}@psu.edu
{balasuri, huazheng.wang}@oregonstate.edu

Abstract

Off-policy Learning to Rank (LTR) aims to optimize a ranker from data collected by
a deployed logging policy. However, existing off-policy learning to rank methods
often make strong assumptions about how users generate the click data, i.e., the
click model, and hence need to tailor their methods specifically under different
click models. In this paper, we unified the ranking process under general stochas-
tic click models as a Markov Decision Process (MDP), and the optimal ranking
could be learned with offline reinforcement learning (RL) directly. Building upon
this, we leverage offline RL techniques for off-policy LTR and propose the Click
Model-Agnostic Unified Off-policy Learning to Rank (CUOLR) method, which
could be easily applied to a wide range of click models. Through a dedicated
formulation of the MDP, we show that offline RL algorithms can adapt to various
click models without complex debiasing techniques and prior knowledge of the
model. Results on various large-scale datasets demonstrate that CUOLR consis-
tently outperforms the state-of-the-art off-policy learning to rank algorithms while
maintaining consistency and robustness under different click models.

1 Introduction

Learning to Rank (LTR) is a core problem in Information Retrieval (IR) with wide applications
such as web search and recommender systems [33]. Traditional LTR methods require high-quality
annotated relevance judgments for model training, which is expensive, time-consuming, and may
not align with actual user preferences [41]. As a result, learning to rank with implicit user feedback,
such as logged click data, has received a huge amount of attention in both academia and industry
[23, 26, 53].

Despite its low cost, learning to rank directly from implicit user feedback could suffer from the
intrinsic noise and bias in user interactions, e.g., position bias, where an item displayed at a higher
position receives a higher click-through rate (CTR) than its relevance [12]. To mitigate the bias in the
click data, off-policy learning to rank methods have been proposed under different bias assumptions
such as position bias [53, 2], selection bias [52] and trust bias [36, 9]. A major branch of off-policy
learning to rank called counterfactual learning to rank achieves unbiasedness by re-weighting the
samples using the inverse propensity scoring (IPS) method [46, 2, 27]. To estimate the propensity
from logged click data, existing works require explicit assumptions about how users examine the
rank list and generate the click data, i.e., click models [12, 10]. For example, position-based model

∗Correspondence to: Yi Su and Huazheng Wang

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

(PBM) [24] assumes the probability of examining a result only depends on the position; while
cascade model (CASCADE) [12] assumes each click depends on the previous click, and dependent
click model (DCM) [18] considers both. Different debiasing methods have been proposed to cator
to specific click models, including PBM [4, 53, 26], CASCADE; and DCM [48]. However, prior
knowledge of the click model is usually unknown and the correct click model needs to be identified
from user behavior data before applying an off-policy algorithm, which is challenging in complex
real-world environments. Besides, many popular and powerful click models have not been studied
in counterfactual learning to rank such as the click chain model (CCM) [17] and the user browsing
model (UBM) [13]. It requires a significant amount of work to study debiasing methods for every
popular click model.

To overcome these issues, we propose to study a unified approach of off-policy learning to rank
adaptable to general click models. Our key insight is that the user’s examination and click behavior
summarized by click models has a Markov structure; thus off-policy LTR under general click models
can be formulated as a Markov Decision Process (MDP). Specifically, the learning to rank problem
now can be viewed as an episodic RL problem [45, 1], where each time step corresponds to a
ranking position, each action selects a document for the position, and the state captures the user’s
examination tendency. This formulation allows us to view off-policy LTR from the perspective
of offline reinforcement learning [31], where we can leverage off-the-shelf offline RL algorithms
[29, 19, 16] to optimize the ranking list. Importantly, our formulation bridges the area of off-policy
learning to rank and offline RL, allowing for the integration of ideas and solutions from offline RL to
enhance the solution of the off-policy LTR problem.

Inspired by the formulation, we propose the Click Model-Agnostic Unified Off-policy Learning to
Rank (CUOLR) method. We first construct each logged query and ranking data as an episode of rein-
forcement learning following the MDP formulation. Our dedicated structure for state representation
learning can efficiently capture the dependency information for examination and click generation,
e.g. ranking position in PBM and previous documents in CM and DCM. The algorithm jointly learns
state representation and optimizes the policy, where any off-the-shelf offline RL algorithm can be
applied as a plug-in solver. Specifically, we adapt the popular CQL algorithm [29] as an instantia-
tion, which applies the conservative (pessimism) principle to Q function estimate. We evaluate our
algorithm on real-world learning to rank datasets [38, 7] under various click models. Compared with
off-policy LTR methods that are dedicated to specific click models, our click model-agnostic method
consistently outperforms the best-performing baselines in all click models.

The contributions of this paper are summarized as follows:

• We formulate the off-policy LTR with biased feedback under general click model as a
Markov Decision Process, and bridge the area of off-policy learning to rank and offline
reinforcement learning.

• We propose CUORL, a Click model-agnostic Unified Off-policy LTR method that could
utilize any offline RL algorithm as a plug-in solver, and we instantiate it using CQL.

• We conduct extensive empirical experiments to validate the effectiveness of our algorithm
using real-world LTR datasets under different click models.

2 Related Work

Off-policy Learning to Rank. Off-policy Learning to Rank aims to optimize the ranking function
from logged click data [23]. The majority of the works aim to mitigate the bias in logged click data,
known as counterfactual learning to rank or unbiased learning to rank. The debiasing methods mainly
follow inverse propensity scoring strategy [26, 49, 4, 51, 48, 3], while there are also recent works
applying doubly robust estimator to reduce variance [40, 28, 37]. Cief et al. [11] proposed pessimistic
off-policy optimization for learning to rank that also mitigates bias but not in an unbiased way. All
these methods rely on prior knowledge of the click model [12, 10], while our algorithm is agnostic to
general click models.

Offline Reinforcement Learning. Offline RL algorithms [29, 14, 44, 21, 16, 15] learn policy from
large logged datasets where the distributional shift between the logging policy and the learned policy
imposes a major challenge. In this setting, different algorithms are proposed, from value-based ones

2

(e.g. [35, 34]) to policy-based ones (e.g. [43, 42]). Among the vast literature on offline reinforcement
learning, the principle of pessimism/conservatism [29, 5, 22] is an important line and has inspired
many algorithms from empirical and theoretical perspective [60, 39, 32, 56, 61, 55, 58]. While all the
aforementioned methods can be plugged into our algorithm, we choose the classic CQL algorithm
[29] with a conservative Q function on top of soft actor-critic algorithm [19].

Reinforcement Learning to Rank. Wei et al. [54] first model ranking problem as an MDP, where
the state is the candidate document set at current rank and the action is the selected document. [57, 62]
have been studied under similar MDP formulation. However, [54, 57] requires relevance labels as
feedback and cannot mitigate bias in click data; [62] is an online learning algorithm that learns
from user interactions instead of logged data. Compared to these studies, we characterize the MDP
formulation from a different perspective, i.e., capture bias in the click model, and propose the offline
RL algorithm with logged click feedback.

3 Reinforcement Learning to Rank: A Unified Formulation

As the majority of existing works in unbiased learning to rank focused on inferring documents’
relevance from the click models, these methods are tied to specific click models adopted. In
this section, we formulate learning to rank with general click feedback as a Markov decision
process, offering a unified and comprehensive modeling of possibly complicated user behavior.
This formulation unifies LTR problems associated with different click models, under which the
underlying click model is translated into the environment setup of MDP such as state transitions and
rewards. It opens up the possibility to employ a rich class of reinforcement learning algorithms for
solving LTR, which we will give greater details in the next section.

3.1 Preliminary

Click model. A key challenge of off-policy LTR lies in learning the document’s attractive-
ness/relevance from the implicit feedback that is biased by the user’s examination behavior. To
address this challenge, a range of click models have been proposed to accommodate user’s various
click behavior [10]. In this study, we focus on a general family of click models [63, 30], which is
marked by two characteristics: (1) Most of the mainstream click models have a "two-step" flavor
that breaks user’s click behavior towards some document down into the user’s examination and the
document’s relevance. For each document d, the user first decides whether to examine it in the ranking
list, based on the specific behavior. Mathematically the user behavior is modeled as the examination
probability, which generally depends on the ranking listR and the position of the document k, denote
as χ(R, k). Once the document is examined, the user will choose whether to click it, based on the
attractiveness α(d) 2. (2) Any documents under the k-th position do not have an effect on χ(R, k).
Definition 1 (Click Model). For any rank listR and position k, the attractiveness and examination
probability are independent.

P (Ck = 1 | R, k) = χ(R, k)α(R(k)) (1)

where Ck is the click indicator at rank k, and χ(R, k) is the examination probability of position k in
the rank listR. For each document d, the attractiveness α(d) only depends on the document itself.
And the attractiveness is mutually independent.

We show that classic click models such as PBM, CASCADE, DCM, and CCM are instances of
Definition 1, with details listed in Appendix C.

3.2 Learning to Rank as Markov Decision Process

In Reinforcement Learning (RL), the interactions between the agent and the environment are often
described as an finite-horizon discounted Markov Decision Process M = (S,A, T, r, γ,H). The
goal of the RL problem is to find a policy π that maximizes the value function, i.e. the discounted

2We simplify the notation and assume d captures (query, document) pair information on given query.

3

cumulative reward

E

[
H∑
t=0

γtr(st, at) | π, s0 = s

]
. (2)

In what follows, we formulate each of the (S,A, T, r, γ,H) components in the ranking scenario. Our
formulation essentially differs from the existing MDP formulation of ranking [54], where the state at
position k is defined as remaining documents that are yet to rank following the k − 1 ranked ones on
the top, instead Wei et al. [54] has a limited capturing of user’s click behavior as a result of being
ignorant of the ordering within the top k− 1 documents. From here on, we use k ∈ [K] to denote the
k-th position top down on a list of total length K. It serves as the counterpart of the time step t in (2)
for the ranking setting.

State S For each position k ∈ [K], state sk should include and represent the current status of the
ranking that the agent is faced with. Thus, we define the state at rank k as:

sk = [(d1, d2, . . . , dk−1), k], (3)

which is a concatenation of the established sub-ranking list up to k, denoted by (d1, d2, . . . , dk−1),
and the position k. Here di refers to the document presented at rank i with s0 is initialized as
= [(), 0]. Together with the action ak as to select document dk presenting at rank k, defining sk as
(3) fully captures the user’s click behavior Ck at this point. Recall (1) that P (Ck = 1 | R, k) =
χ(R, k)α(R(k)), where χ(R, k) is determined by (d1, d2, . . . , dk−1). To better capture the rich
information in the observed state, we discuss how to attain the effective state embedding from the
raw representation in Section 4.

Action A Action ak is naturally defined as the document to present at rank k given state sk. In
our experiments, each action is represented by a feature vector associated with the query. It is worth
mentioning that the available action set Ak at each k is related to state sk as well as the specific
query, unlike the common case where the action space is fixed. There are two main differences here
compared with the fixed action space: (1). the available actions vary under different queries; and (2).
once an action is chosen, it is removed from the candidate set Ak.

Transition T (s′|s, a) Transition maps a state-action pair to the probability distribution over pos-
sible next states. Given our formulation of state and action, the next state sk+1 is deterministic
given sk = [(d1, d2, · · · , dk−1), k] and ak. Formally, T (sk+1|sk, ak) = 1 if and only if sk+1 =
[(d1, d2, · · · , dk−1, ak), k + 1]. Note that with this transition function, we can show that our model
is a rigorous MDP, where the distribution of next state only based on the current state and the action.

Reward r(s, a) Aligned with the goal of LTR to maximize total clicks, we adopt the binary click
as a reward at each position, i.e. r(sk, ak) = Ck. It is easily checked this is a well-defined reward
from (1) that the distribution of r is fully determined by s and a, i.e., E[r(sk, ak)] = χ(sk)α(ak).

Putting the components together we have formally built up our MDP formulation of LTR, which
we name as "MDP for Ranking" and denote byMR(S,A, T , r, γ,H) with components defined as
above. The rich RL literature has the convention to solve the optimal policy π∗ that maximizes the
cumulative reward, which in our proposed MDP translates to

π∗ = argmax
π

E

(
K∑
k=1

γk−1r(sk, π(· | sk))

)
, (4)

where the expectation is taken over the stochasticity in both environments MR and policy π.
Before leveraging any RL algorithms for ranking, it is necessary to validate good policies of
MR(S,A, T , r, γ,K) yields good ranking lists. In the following subsection, we give a rigorous
theorem for this validation.

3.3 Optimizing Rank List by Optimizing Policy

Constructing a rank list given policy π. With the definition of MDP, we can construct a rank
list with any given policy sequentially. At each position k, the state is constructed based on previous
document features (manually or by sequential models). Then a document (action) is chosen by the
policy π and placed at position k, where the next state is determined accordingly. Repeat this process
at each position until all the documents are set or the list reaches its end (K = 10 for example).

4

Definition 2 (Policy Induced Ranking.). Given a policy π(· | s) ofMR(S,A, T , r, γ), construct
the induced rank listRπ as

Rπ(k)← ak ∼ π(· | sk).

To investigate whether the optimal rank list can be captured by optimal policy π∗, we start with
defining the optimality of rank list.

Definition 3 (Optimality). A rank list R is optimal if and only if all documents are sorted in
descending order in terms of their attractiveness, i.e.

α(R(1)) ≥ . . . ≥ α(R(K))

and {R(1), · · · ,R(K)} are the K most attractive documents among all, where K is the length of
the list and it is also called the top-K ranking.

Assumption 3.1 (Optimality of optimal ranking). Let VR(s1) = E[
∑K
k=1 γ

k−1r(sk,R(k))] be the
value of rank list R, and let R⋆ be the optimal rank list by Definition 3. Then maxR VR(s1) =
VR⋆(s1).

Assumption 3.1 is adopted from Assumption 2 in [30], which suggests optimal rank list sorted by
decreasing attractiveness of documents leads to optimal rewards, which will be covered by optimal
policy learned from our MDP formulation. This is a mild assumption as classic click models such as
PBM and cascade model all satisfy the assumption [63].

4 Unified Off-policy Learning to Rank

The formulation of off-policy learning-to-rank (LTR), when viewed from the perspective of offline
reinforcement learning, presents an opportunity to leverage off-the-shelf RL algorithms to address
off-policy LTR problems. In this section, we introduce a novel and unified off-policy LTR algorithm
that is agnostic to the underlying click model used to generate the offline training data. Our algorithm
is composed of three key components: (1) episodes constructed from the logged ranking data; (2).
state representation learning; and (3). policy optimization via offline RL algorithms. In the following,
we provide a detailed exposition of each component.

Episodes Construction. Given any logged ranking dataset, the first step is to construct a se-
ries of episodes from the ranking data, making it compatible with the off-the-shelf RL algorithms.
Specifically, our original ranking data {(qi,Ri, ci(qi,Ri))}ni=1 is composed of n tuples with con-
textual query feature qi, a ranked list Ri with K documents and a corresponding click vector
ci(qi,Ri) ∈ {0, 1}K . From the perspective of RL, this tuple can be conceptualized as one episode,
following the established MDP formulation of the ranking process. In particular, for each tuple
(qi,Ri, ci(qi,Ri)), we transform it to a length K episode τi := {(sik, aik, rik)}Kk=1 with

sik := ϕ(Ri[: k], k), aik := Ri[k], rik := ci(qi,Ri)[k] for ∀k ∈ [K]

Here we useRi[: k] to denote the concatenation of the document feature vectors before position k
and Ri[k] represents the document feature at position k, similarly for ci(qi,Ri)[k]. In particular,
the episode τi is constructed by going through the ranked list from top to the bottom. Each state sik
contains all the document information before position k and the position information k, represented
as a function ofRi[: k] and k with ϕ being a learned embedding function that we will discuss shortly.
The action at step k is the document placed at position k, i.e., Ri[k], with the reward at current
timestep is the binary click for the corrpsonding action at position k, i.e., ci(qi,Ri)[k]. Given this,
we have constructed an offline RL dataset with n episodes with length K each.

State Representation Learning. In RL, state representation learning offers an efficient means
of managing large, raw observation spaces, enhancing the generalization performance when
encountering previously unseen states. In our particular setting, the observation space consists of raw
document features up to position k. As we will show in Section 5.2, utilizing raw observations as the
state representation in the RL algorithm can lead to highly sub-optimal performance, due to both
unscalability with respect to k and limitations in the representation power. Rather than incorporating
additional auxiliary tasks to explicitly learn state representations, we propose to jointly learn the state

5

representations together with the policy optimization algorithm, which aims to automatically learn
state representation ϕ that will benefit the downstream policy optimization task. For example, DQN
uses multiple layers of nonlinear functions to encode the map perceptual inputs to a state embedding
that could be linearly transformed into the value function. To this end, we introduce the implicit state
representation learning component our off-policy learning to rank algorithm, which is composed of
the following key components:

Positional Encoding: To effectively inject the position information in sik, we utilize the positional
encoding technique [50, 59], ensuring the model make use of the position information when generating
clicks. Specifically, positional encoding represents each position k in the ranked list by the sinusoidal
function with different frequencies such that

PE(k)2i = sin

(
k

100002i/dmodel

)
, PE(k)2i+1 = cos

(
k

100002i/dmodel

)
,

Here PE(k) ∈ Rd with d being the dimension of document feature and 2i and 2i+ 1 being the even
and the odd entries of PE(k) with 2i, 2i+ 1 ∈ [d].

Multi-head Self-attention: The other challenge in our case is to find a specific architecture for the
state representation learning that tailored for the learning to rank task. As the ranked list of document
features is inherently sequential, we leverage the multi-head self-attention mechanism to learn the
state embedding ϕ. Specifically, the state sik is defined as:

sik := ϕ(Ri[: k], k) = Concat(head1, . . . , headI)W
O

where headi = Attention(sk ·WQ
i , sk ·WK

i , sk ·WV
i), with WQ

i ,W
K
i ,W

V
i ∈ ψi are learnable

parameters for the ith head and WO is the learnable parameter of the output layer after concatenating
the results of all the I heads; At each position k, we concatenate the document featuresRi[: k] along
with the position embedding for position k, passing them as the input for the multi-head self-attention.

Joint Representation Learning and Policy Optimization. Given the constructed offline dataset
and a dedicated structure for learning efficient state representations, we now demonstrate how we
leverage any off-the-shelf RL algorithm as the plug-in solver for finding the optimal policy. We use
the popular offline RL algorithm: CQL, as an instantiation, which learns a conservative Q function
and utilizes the classical soft actor-critic algorithm on top of it. Specifically, it optimizes the following
lower bound of the critic (Equation 5):

θ̂ ← argmin
θ

αEs∼D

[
log
∑
a

exp(Qθ(s, a))− Ea∼πβ(a|s)[Qθ(s, a)]

]
+

1

2
Es,a,s′∼D

[(
Qθ − B̂πQ̂θ′

)2]
(5)

where B̂πQ = r + γPπQ is the estimated Bellman operator, πβ is the logging policy. Here we
use θ′ to emphasize that the parameters in the target Q network is different from policy Q network.
The conservative minimizes the expected Q value for out-of-distribution (state, action) pairs and
prevents the Q-function’s over-estimation issue. Built upon SAC, the algorithm improves the policy
πξ (i.e., the actor) based on the gradient of the estimated Q function, with entropy regularization.
Compared with the original CQL algorithm, we also add the state representation learning component,
and we jointly optimize the state embedding, the critic and actor parameters, with a detailed algorithm
included in Algorithm 1. Once we have obtained the learned optimal policy π∗

ξ , we extract the optimal
ranking policy following Definition 2.

5 Experiments

We empirically evaluate the performance of our proposed method CUOLR on several public datasets,
compared with the state-of-the-art off-policy learning-to-rank methods. Specifically, we aim to
assess the robustness of our method across different click models and showcase the effectiveness of
our unified framework. Beyond this, we perform the ablation study to examine the efficacy of our
proposed state representation learning component. 3.

3Codes: https://github.com/ZeyuZhang1901/Unified-Off-Policy-LTR-Neurips2023

6

https://github.com/ZeyuZhang1901/Unified-Off-Policy-LTR-Neurips2023

Algorithm 1 Click Model-Agnostic Unified Off-policy Learning to Rank (with CQL)

1: Inputs: logged ranking data {(qi,Ri, ci(qi,Ri))}ni=1, length of the ranking K, batch size B,
train iteration T .

2: Initialize: policy πξ and Q function Qθ, embedding model ϕψ(·, ·)
3: for t ∈ [T] do:
4: Randomly sample a batch of queries Q with size B.
5: Construct offline RL episodes T =

{
{(sik, aik, rik)}Kk=1

}
i:qi∈Q.

sik = ϕψ(Ri[: k], k), aik = Ri[k], rik = ci(qi,Ri)[k] for ∀k ∈ [K]

6: Train the Q-net (and embedding model) with loss defined in equation (5)

θ ← θ − ηQ∇θLoss(θ, T)
ψ ← ψ − ηϕ∇ψLoss(θ, T)

7: Improve policy πξ (and embedding model) with SAC-style entropy regularization.

ξ ← ξ + ηπEs∼T ,a∼πξ(·|s) [Qθ(s, a)− log πξ(a | s)]
ψ ← ψ + ηϕEs∼T ,a∼πξ(·|s) [Qθ(s, a)− log πξ(a | s)]

8: end for
9: Output: learned ranking policy π∗

ξ , Q function Q∗
θ , embedding model ϕ∗ψ(·, ·)

10: Recover the optimal ranking from the learned policy π∗
ξ using Definition 2.

5.1 Setup

Datasets. We conduct semi-synthetic experiments on two traditional learning-to-rank benchmark
datasets: MSLR-WEB10K and Yahoo! LETOR (set 1). Specifically, we sample click data from
these real-world datasets, which not only increases the external validity of the experiments but also
provides the flexibility to explore the robustness of our method over different click models. For
both datasets, it consists of features representing query and document pairs with manually judged
relevance labels ranging from 0 (irrelevant) to 4 (perfectly relevant). We provide the statistics of all
datasets in Appendix A. Both datasets come with the train-val-test split. The train data is used for
generating logging policy and simulating clicks, with the validation data used for hyperparameter
selection. And the final performance of the learned ranking policy is evaluated in the test data.

Click Data Generation. We follow Joachims et al. [25] to generate partial-information click data
from the full-information relevance labels. Specifically, we first train a Ranking SVM [26] using
1% of the training data as our logging policy πβ to present the initial ranked list of items. For each
query qi, we get a ranking Ri and simulate the clicks based on various click models we use. As
discussed in Section 3.1, there are two components for the click generation, examination probability
and attractiveness of the document for the query. All click models differ in their assumptions on the
examination probability. For PBM, we adopt the examination probability ρ = {ρk}Kk=1 estimated by
Joachims et al. [25] through eye-tracking experiments:

χ(Rq, k) = χ(k) = ρηk

where η ∈ [0,+∞] is a hyper-parameter that controls the severity of presentation biases and in
our experiment, we set η = 1.0 as default. For CASCADE, the examination probabilities are only
dependent on the attractions of each previous document. For DCM, the λs are also simulated by the
same parameters as PBM examination probability. We use the same attraction models for all click
models, as defined following:

α(d) = ϵ+ (1− ϵ) 2
r(d) − 1

2rmax − 1

where r(d) ∈ [0, 4] is the relevance label for document d and rmax = 4 is the maximum relevance
label. We also use ϵ to model click noise so that irrelevant documents have a non-zero probability to
be treated as attractive and being clicked.

7

Table 1: Performance comparison with different click models on Yahoo! LETOR set1 and MSLR-
WEB10K. "*" and "**" indicate statistically significant improvement (p-value < 0.05 and p-value <
0.01 respectively) over the best baseline for each metric respectively.

CLICK MODEL ALG

Yahoo! LETOR MSLR-WEB10K

ERR@K NDCG@K ERR@K NDCG@K

K=5 K=10 K=5 K=10 K=5 K=10 K=5 K=10

PBM
DLA 0.439 0.455 0.691 0.742 0.256 0.278 0.356 0.384

CM-IPW 0.440 0.456 0.692 0.743 0.255 0.277 0.354 0.383
IPW 0.446 0.462 0.700 0.748 0.281 0.301 0.367 0.390

CUOLR(CQL) 0.458∗∗ 0.473∗∗ 0.700 0.753∗ 0.281 0.303 0.380∗∗ 0.406∗∗

CUOLR(SAC) 0.459∗∗ 0.478∗∗ 0.700 0.753∗∗ 0.279 0.301 0.379∗∗ 0.404∗∗

CASCADE
DLA 0.441 0.457 0.690 0.741 0.265 0.286 0.365 0.392

CM-IPW 0.444 0.460 0.696 0.745 0.283 0.304 0.378 0.403
IPW 0.442 0.457 0.690 0.740 0.257 0.279 0.358 0.387

CUOLR(CQL) 0.459∗∗ 0.479∗∗ 0.696 0.748 0.280 0.301 0.378 0.404
CUOLR(SAC) 0.461∗ 0.478∗∗ 0.696 0.748 0.279 0.301 0.379 0.405

DCM
DLA 0.444 0.459 0.696 0.745 0.279 0.299 0.378 0.404

CM-IPW 0.447 0.463 0.704 0.752 0.284 0.304 0.379 0.402
IPW 0.444 0.459 0.697 0.746 0.278 0.299 0.363 0.387

CUOLR(CQL) 0.461∗∗ 0.474∗∗ 0.699 0.753 0.278 0.300 0.380 0.405
CUOLR(SAC) 0.461∗∗ 0.475∗∗ 0.703 0.755 0.278 0.300 0.378 0.403

LOGGING 0.385 0.403 0.630 0.693 0.206 0.230 0.304 0.338
ORACLE 0.462 0.476 0.739 0.781 0.328 0.347 0.432 0.453

Baselines and Hyperparameters. We compare our CUOLR method with the following baselines:
(1). Dual Learning Algorithm (DLA) [4] which jointly learns an unbiased ranker and an unbiased
propensity model; (2). Inverse Propensity Weighting (IPW) Algorithm [52, 26] which first learns the
propensities by result randomization, and then utilizes the learned probabilities to correct for position
bias; and (3). Cascade Model-based IPW (CM-IPW) [48] which designs a propensity estimation
procedure where previous clicks are incorporated in the estimation of the propensity. It is worth
mentioning that (1) and (2) are designed for PBM and (3) is tailored for cascade-based models.
Besides, we train a LambdaMart [6] model with true relevance labels as the upper bound for the
ranking model, ORACLE for short. The performance of the logging policy (LOGGING) is also
reported as the lower bound of the ranking model.

For baselines, we use a 2-layer MLP with width 256 and ReLU activation according to their original
paper and codebase [4, 51, 47]. For the embedding model in our method, we use multi-head attention
with 8 heads. And for actors and critics in CQL and SAC algorithms, we utilize a 2-layer MLP with
width 256 and ReLU activation. The conservative parameter α (marked red in Equation (5)) in CQL
is set to 0.1. We use Adam for all methods with a tuned learning rate using the validation set. More
details are provided in Appendix A.

Metrics. We evaluate all the methods using the full-information test set. We use the normalized
Discounted Cumulative Gain (nDCG) [20] and the Expected Reciprocal Rank (ERR) [8] as evaluation
metrics and report the results at position 5 and 10 to demonstrate the performance of models at
different positions.

5.2 Results

How does CUOLR perform across different click models, compared to the baselines? To
validate the effectiveness of our CUOLR method, we conducted performance evaluations across
a range of click-based models, including PBM, CASCADE, DCM, and CCM. We compared our
approach with state-of-the-art baselines specifically designed for these click models, namely DLA,
IPW, and CM-IPW. Due to space limitation, we only show results of PBM, CASCADE, and DCM in
Table 1, with the full table shown in Appendix B. For the position-based model, IPW demonstrates the

8

Table 2: Performance of CUOLR algorithm with different state embeddings. The experiments are
conducted on Yahoo! LETOR set1 and MSLR-WEB10K, with PBM and CASCADE as click models.

CLICK MODEL STATE EMBED

Yahoo! LETOR MSLR-WEB10K

ERR@K NDCG@K ERR@K NDCG@K

K=5 K=10 K=5 K=10 K=5 K=10 K=5 K=10

PBM

POS 0.439 0.455 0.691 0.742 0.282 0.304 0.382 0.407
PREDOC 0.435 0.451 0.682 0.734 0.274 0.295 0.374 0.401

POS + PREDOC 0.440 0.456 0.685 0.734 0.277 0.298 0.375 0.400
ATTENTION 0.459 0.478 0.700 0.753 0.281 0.303 0.380 0.406

CASCADE

POS 0.426 0.442 0.668 0.724 0.260 0.283 0.360 0.391
PREDOC 0.456 0.472 0.703 0.754 0.272 0.293 0.373 0.400

POS+PREDOC 0.453 0.470 0.686 0.740 0.275 0.296 0.373 0.396
ATTENTION 0.461 0.478 0.696 0.748 0.280 0.301 0.378 0.404

ORACLE 0.462 0.486 0.739 0.781 0.328 0.347 0.432 0.453

best performance among the baselines, which is expected as it is tailored for position-based methods.
Similarly, CM-IPW yielded the best performance for the cascade-based methods, which aligns
with its incorporation of previous document information in the propensity estimation. Remarkably,
across all click models, our method, whether combined with SAC or CQL, consistently achieves the
best performance in most cases. This validates the effectiveness of our unified framework and the
robustness of our CUOLR algorithm. Furthermore, it is noteworthy that our method demonstrated
consistent performance across different RL algorithms, verifying its resilience and adaptability to
various underlying RL solvers.

How effective is the state representation learning component in CUOLR? In this experiment,
we examine different approaches for state representation learning and study how it affects the overall
performance of our proposed method. We compare with the following state embeddings: (1). position-
only embedding (POS), which only utilizes the position information using positional encoding; (2).
previous-document-based embedding (PREDOC), which takes a simple average of all the document
features in R[:, k]; (3). the concatenation of the position and the average document features up to
position k (POS + PREDOC), as well as the proposed learnable state representations based on multi-
head self-attention (ATTENTION). ORACLE here is used to show the gap from the upper bound.
The results of our experiments are presented in Table 2 (with a full table including other click models
is shown in Appendix B). For the PBM click model, it is evident that state embeddings utilizing
position-based information, such as POS and POS+PREDOC, outperform other state embeddings.
In contrast, for the CASCADE click model, state embeddings utilizing previous document features
exhibit significantly stronger performance compared to those utilizing position information. Notably,
our method, CUOLR, which dynamically learns the state embeddings during policy optimization,
consistently achieves comparable performance compared to using hard-coded fixed state embeddings.
This highlights the necessity of leveraging state representation in off-policy LTR and underscores the
effectiveness of our proposed approach.

6 Conclusion

In this paper, we present an off-policy learning-to-rank formulation from the perspective of reinforce-
ment learning. Our findings demonstrate that under this novel MDP formulation, RL algorithms
can effectively address position bias and learn the optimal ranker for various click models, without
the need for complex debiasing methods employed in unbiased learning to rank literature. This
work establishes a direct connection between reinforcement learning and unbiased learning to rank
through a concise MDP model. Specifically, we propose a novel off-policy learning-to-rank algorithm,
CUOLR, which simultaneously learns efficient state representations and the optimal policy. Through
empirical evaluation, we show that CUOLR achieves robust performance across a wide range of click
models, consistently surpassing existing off-policy learning-to-rank methods tailored to those specific
models. These compelling observations indicate that the extensive research conducted on offline

9

reinforcement learning can be leveraged for learning to rank with biased user feedback, opening up a
promising new area for exploration.

Acknowledgments and Disclosure of Funding

This work was supported in part by Google Cloud Research Credits Program. Mengdi Wang
acknowledges the support by NSF grants DMS-1953686, IIS-2107304, CMMI-1653435, ONR grant
1006977, and C3.AI.

References
[1] Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory

and algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, pages 10–4, 2019.

[2] Aman Agarwal, Kenta Takatsu, Ivan Zaitsev, and Thorsten Joachims. A general framework
for counterfactual learning-to-rank. In Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 5–14, 2019.

[3] Aman Agarwal, Xuanhui Wang, Cheng Li, Michael Bendersky, and Marc Najork. Addressing
trust bias for unbiased learning-to-rank. In The World Wide Web Conference, pages 4–14, 2019.

[4] Qingyao Ai, Keping Bi, Cheng Luo, Jiafeng Guo, and W Bruce Croft. Unbiased learning to
rank with unbiased propensity estimation. In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval, pages 385–394, 2018.

[5] Jacob Buckman, Carles Gelada, and Marc G Bellemare. The importance of pessimism in
fixed-dataset policy optimization. arXiv preprint arXiv:2009.06799, 2020.

[6] Chris J.C. Burges. From ranknet to lambdarank to lambdamart: An overview. Technical Re-
port MSR-TR-2010-82, June 2010. URL https://www.microsoft.com/en-us/research/
publication/from-ranknet-to-lambdarank-to-lambdamart-an-overview/.

[7] Olivier Chapelle and Yi Chang. Yahoo! learning to rank challenge overview. In Proceedings of
the learning to rank challenge, pages 1–24. PMLR, 2011.

[8] Olivier Chapelle, Donald Metlzer, Ya Zhang, and Pierre Grinspan. Expected reciprocal rank for
graded relevance. In Proceedings of the 18th ACM conference on Information and knowledge
management, pages 621–630, 2009.

[9] Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan He. Bias and de-
bias in recommender system: A survey and future directions. arXiv preprint arXiv:2010.03240,
2020.

[10] Aleksandr Chuklin, Ilya Markov, and Maarten de Rijke. Click Models for Web Search. Morgan
& Claypool, 2015. ISBN 9781627056489. doi: 10.2200/S00654ED1V01Y201507ICR043.

[11] Matej Cief, Branislav Kveton, and Michal Kompan. Pessimistic off-policy optimization for
learning to rank. arXiv preprint arXiv:2206.02593, 2022.

[12] Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. An experimental comparison of
click position-bias models. In Proceedings of the 2008 international conference on web search
and data mining, pages 87–94, 2008.

[13] Georges E Dupret and Benjamin Piwowarski. A user browsing model to predict search engine
click data from past observations. In Proceedings of the 31st annual international ACM SIGIR
conference on Research and development in information retrieval, pages 331–338, 2008.

[14] Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement
learning. Journal of Machine Learning Research, 6, 2005.

[15] Dylan J Foster, Akshay Krishnamurthy, David Simchi-Levi, and Yunzong Xu. Offline rein-
forcement learning: fundamental barriers for value function approximation. arXiv preprint
arXiv:2111.10919, 2021.

10

https://www.microsoft.com/en-us/research/publication/from-ranknet-to-lambdarank-to-lambdamart-an-overview/
https://www.microsoft.com/en-us/research/publication/from-ranknet-to-lambdarank-to-lambdamart-an-overview/

[16] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In International conference on machine learning, pages 2052–2062.
PMLR, 2019.

[17] Fan Guo, Chao Liu, Anitha Kannan, Tom Minka, Michael Taylor, Yi-Min Wang, and Christos
Faloutsos. Click chain model in web search. In Proceedings of the 18th international conference
on World wide web, pages 11–20, 2009.

[18] Fan Guo, Chao Liu, and Yi Min Wang. Efficient multiple-click models in web search. In
Proceedings of the second acm international conference on web search and data mining, pages
124–131, 2009.

[19] Tuomas Haarnoja, Aurick Zhou, Pieter Abeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

[20] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM
Transactions on Information Systems (TOIS), 20(4):422–446, 2002.

[21] Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning.
In International Conference on Machine Learning, pages 652–661. PMLR, 2016.

[22] Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline RL? In
International Conference on Machine Learning, pages 5084–5096. PMLR, 2021.

[23] Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings of the
eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pages
133–142, 2002.

[24] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay. Accu-
rately interpreting clickthrough data as implicit feedback. In Proceedings of the 28th An-
nual International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’05, page 154–161, New York, NY, USA, 2005. Association for Com-
puting Machinery. ISBN 1595930345. doi: 10.1145/1076034.1076063. URL https:
//doi.org/10.1145/1076034.1076063.

[25] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay. Accurately
interpreting clickthrough data as implicit feedback. In Acm Sigir Forum, volume 51, pages 4–11.
Acm New York, NY, USA, 2017.

[26] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. Unbiased learning-to-rank with
biased feedback. In Proceedings of the tenth ACM international conference on web search and
data mining, pages 781–789, 2017.

[27] Jae-kwang Kim and David Haziza. Doubly robust inference with missing data in survey
sampling. Statistica Sinica, 24, 01 2014. doi: 10.5705/ss.2012.005.

[28] Haruka Kiyohara, Yuta Saito, Tatsuya Matsuhiro, Yusuke Narita, Nobuyuki Shimizu, and Yasuo
Yamamoto. Doubly robust off-policy evaluation for ranking policies under the cascade behavior
model. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data
Mining, pages 487–497, 2022.

[29] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning
for offline reinforcement learning. Advances in Neural Information Processing Systems, 33:
1179–1191, 2020.

[30] Tor Lattimore, Branislav Kveton, Shuai Li, and Csaba Szepesvari. Toprank: A practical
algorithm for online stochastic ranking. In NeurIPS, 2018.

[31] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[32] Gene Li, Cong Ma, and Nathan Srebro. Pessimism for offline linear contextual bandits using ℓp
confidence sets. arXiv preprint arXiv:2205.10671, 2022.

11

https://doi.org/10.1145/1076034.1076063
https://doi.org/10.1145/1076034.1076063

[33] Tie-Yan Liu et al. Learning to rank for information retrieval. Foundations and Trends® in
Information Retrieval, 3(3):225–331, 2009.

[34] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[35] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[36] Maeve O’Brien and Mark Keane. Modeling result-list searching in the world wide web: The
role of relevance topologies and trust bias. 01 2006.

[37] Harrie Oosterhuis. Doubly robust estimation for correcting position bias in click feedback for
unbiased learning to rank. ACM Transactions on Information Systems, 41(3):1–33, 2023.

[38] Tao Qin and Tie-Yan Liu. Introducing LETOR 4.0 datasets. CoRR, abs/1306.2597, 2013. URL
http://arxiv.org/abs/1306.2597.

[39] Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline
reinforcement learning and imitation learning: A tale of pessimism. Advances in Neural
Information Processing Systems, 34:11702–11716, 2021.

[40] Yuta Saito. Doubly robust estimator for ranking metrics with post-click conversions. In
Proceedings of the 14th ACM Conference on Recommender Systems, pages 92–100, 2020.

[41] Mark Sanderson et al. Test collection based evaluation of information retrieval systems.
Foundations and Trends® in Information Retrieval, 4(4):247–375, 2010.

[42] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International conference on machine learning, pages 1889–1897.
PMLR, 2015.

[43] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[44] Laixi Shi, Gen Li, Yuting Wei, Yuxin Chen, and Yuejie Chi. Pessimistic q-learning for offline
reinforcement learning: Towards optimal sample complexity. In International Conference on
Machine Learning, pages 19967–20025. PMLR, 2022.

[45] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[46] Adith Swaminathan and Thorsten Joachims. Counterfactual risk minimization: Learning from
logged bandit feedback. In International Conference on Machine Learning, pages 814–823.
PMLR, 2015.

[47] Anh Tran, Tao Yang, and Qingyao Ai. Ultra: An unbiased learning to rank algorithm toolbox.
In Proceedings of the 30th ACM International Conference on Information & Knowledge
Management, pages 4613–4622, 2021.

[48] Ali Vardasbi, Maarten de Rijke, and Ilya Markov. Cascade model-based propensity estimation
for counterfactual learning to rank. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 2089–2092, 2020.

[49] Ali Vardasbi, Harrie Oosterhuis, and Maarten de Rijke. When inverse propensity scoring does
not work: Affine corrections for unbiased learning to rank. In Proceedings of the 29th ACM
International Conference on Information & Knowledge Management, pages 1475–1484, 2020.

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

12

http://arxiv.org/abs/1306.2597

[51] Nan Wang, Zhen Qin, Xuanhui Wang, and Hongning Wang. Non-clicks mean irrelevant? propen-
sity ratio scoring as a correction. In Proceedings of the 14th ACM International Conference on
Web Search and Data Mining, pages 481–489, 2021.

[52] Xuanhui Wang, Michael Bendersky, Donald Metzler, and Marc Najork. Learning to rank
with selection bias in personal search. In Proceedings of the 39th International ACM SIGIR
conference on Research and Development in Information Retrieval, pages 115–124, 2016.

[53] Xuanhui Wang, Nadav Golbandi, Michael Bendersky, Donald Metzler, and Marc Najork.
Position bias estimation for unbiased learning to rank in personal search. In Proceedings of
the Eleventh ACM International Conference on Web Search and Data Mining, pages 610–618,
2018.

[54] Zeng Wei, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. Reinforcement learning to rank
with markov decision process. In Proceedings of the 40th international ACM SIGIR conference
on research and development in information retrieval, pages 945–948, 2017.

[55] Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-
consistent pessimism for offline reinforcement learning. Advances in Neural Information
Processing Systems, 34:6683–6694, 2021.

[56] Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridging
sample-efficient offline and online reinforcement learning. Advances in Neural Information
Processing Systems, 34:27395–27407, 2021.

[57] Jun Xu, Zeng Wei, Long Xia, Yanyan Lan, Dawei Yin, Xueqi Cheng, and Ji-Rong Wen.
Reinforcement learning to rank with pairwise policy gradient. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 509–518, 2020.

[58] Tengyu Xu and Yingbin Liang. Provably efficient offline reinforcement learning with trajectory-
wise reward. arXiv preprint arXiv:2206.06426, 2022.

[59] Hang Yan, Bocao Deng, Xiaonan Li, and Xipeng Qiu. Tener: adapting transformer encoder for
named entity recognition. arXiv preprint arXiv:1911.04474, 2019.

[60] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural
Information Processing Systems, 33:14129–14142, 2020.

[61] Andrea Zanette, Martin J Wainwright, and Emma Brunskill. Provable benefits of actor-critic
methods for offline reinforcement learning. Advances in Neural Information Processing Systems,
34:13626–13640, 2021.

[62] Shengyao Zhuang, Zhihao Qiao, and Guido Zuccon. Reinforcement online learning to rank
with unbiased reward shaping. arXiv preprint arXiv:2201.01534, 2022.

[63] Masrour Zoghi, Tomas Tunys, Mohammad Ghavamzadeh, Branislav Kveton, Csaba Szepesvari,
and Zheng Wen. Online learning to rank in stochastic click models. In International Conference
on Machine Learning, pages 4199–4208, 2017.

13

A Experiment Details

A.1 Dataset Statistics

We conducted experiments on MSLR-WEB10K 4 and Yahoo! LETOR (set 1) 5 with semi-synthetic
generated click data. Yahoo! LETOR comes from the Learn to Rank Challenge. It consists of 29,921
queries and 710K documents. Each query-document pair is represented by a 700-dimensional feature
and annotated with a 5-level relevance label ranging from 0 to 4. MSLR-WEB10K dataset contains
10,000 queries and 125 retrieved documents on average. Each query-document pair is represented
by a 136-dimensional feature vector and a 5-level relevance label. The dataset is partitioned into
five parts with about the same number of queries, denoted as S1, S2, S3, S4, and S5, for five-fold
cross-validation. All statistics of the used datasets are summarized in Table 3.

Table 3: Statistics of Learning to Rank Datasets

of queries # of features # of query-document pairs rel level # of folders

MSLR-WEB10K 10000 136 1250k 5 5
Yahoo! LETOR 29921 700 710k 5 2

A.2 Implementation Details

Before introducing the hyperparameters required for each algorithm, we first describe some global
hyperparameters that are used commonly across all algorithms. We use batch size B = 256 queries
per epoch, and use nDCG@10 as the training objective for all baselines. We use Adam optimizer to
train all the networks.

Dual Learning Algorithm (DLA) [4]. For DLA, two sub-models are being implemented: the
ranking (scoring) model which is used to score each document; and the propensity model which is
used to estimate the propensity for each document in the rank list. We use the MLP with two hidden
layers of 256 units for both of them, and other hyperparameters are shown in Table 5.

Inverse Propensity Weighting (IPW) [52, 26] & Cascade Model-based IPW (CM-IPW) [48].
For IPW and CM-IPW, we need to get the propensities from Result Randomization. In total, there
are 10M random rank lists with different searching queries shown to the user (click model), and the
parameters of each click model are estimated by Maximize Likelihood Estimation (MLE). Estimation
details are shown in Table 4, where Ck and C<k indicate the click at rank k and before rank k
respectively. The superscript ·(s) denotes the click of some click session s. Besides, we implement
the ranking model the same way as that for DLA. Other hyperparameters are shown in Table 5.

ORACLE. For ORACLE, we train a LambdaMART ranker Burges [6] with true labels on the
training dataset and evaluate its performance on the test set. We leverage the RankLib6 learning to
rank library, and set the hyperparameters shown in Table 5. This utilizes the full-information data and
serves as an upper bound of the performance for all algorithms utilizing the partial-information data,
such as the generated clicks.

CUOLR. For our algorithm CUOLR, there are three sets of hyperparameters used by the following
sub-models: parameters for state embedding model, RL policy, as well as RL critic, where we use a
256-256 MLP to implement all the networks. Detailed hyperparameters are shown in Table 5.

B Additional Results

In this section, we present the complete results for all five click models (PBM, CASCADE, UBM,
DCM, and CCM) on the two datasets: Yahoo! LETOR set 1 and MSLR-WEB10K. For the first two

4https://www.microsoft.com/en-us/research/project/mslr/
5https://webscope.sandbox.yahoo.com/
6https://sourceforge.net/p/lemur/wiki/RankLib/

14

https://www.microsoft.com/en-us/research/project/mslr/
https://webscope.sandbox.yahoo.com/
https://sourceforge.net/p/lemur/wiki/RankLib/

Table 4: Details for IPW and CM-IPW.
PROPENSITY PARAM. ESTIMATION

IPW P (E = 1 | k) = θk θk =
∑

s∈S C
(s)
0∑

s∈S C
(s)
k

CM-IPW
P (E = 1 | k) ≈ P (E = 1 | k, C<k)

= Πi<k(1− Ci(1− λi))
λk = 1−

∑
s∈Sk

I(C
(s)
>k

=0)∑
s∈Sk

1
, Sk =

{
s : C

(s)
k = 1

}

Table 5: Hyperparameters for each algorithm used in the experiment.
ALG HYPERPARAMETERS

DLA
policy learning rate: 1e-4

propensity learning rate: 1e-4
loss type: softmax

IPW & CM-IPW policy learning rate: 1e-4
loss type: softmax

ORACLE

number of trees: 1000
number of leaves for each tree: 100

shrinkage (learning rate): 0.01
min leaf support: 50

early stop: 100

CUOLR

actor learning rate: 1e-4
critic learning rate: 1e-4

actor α: 1e-10 (fixed)
soft update τ : 5e-3

discount γ: 0.8
embed learning rate: 1e-6

embed type: multi-head attention
number of heads: 8
CQL α: 1e-1 (fixed)

studies in Section B.1 and B.2, we run 5 runs with different random seeds for the Yahoo! dataset.
For the MSLR-WEB10K dataset which naturally comes with 5 folds, we take 1 run for each fold
and aggregate the results. In the ablation experiment of conservatism for the offline RL algorithm in
Section B.3, we only run 3 runs on Yahoo! due to the time limit. In all of our experiments, we use
nDCG and ERR at positions 3,5,10 as evaluation metrics.

B.1 Performance across Different Click Models

In this section, we present a comprehensive comparison between our proposed method, CUOLR, and
various baseline approaches. Specifically, we examine the efficacy of DLA and IPW, which have
been specifically designed for position-based models, as well as CM-IPS, which has been tailored for
cascade-based models. The comparative results are presented in Table 7. In the case of position-based
models such as PBM and UBM, it is evident that IPW demonstrates the most superior performance
among all the considered baselines. Conversely, when evaluating cascade models such as cascade
and DCM, the utilization of CM-IPW yields improved performance, as it takes into account the
propensity estimation considering prior examinations and clicks. Among the diverse click models
examined, our unified algorithm, CUOLR, consistently achieves the highest level of performance in
terms of the ERR metrics across different positions. Furthermore, it consistently outperforms the
other models in the majority of cases in terms of nDCG@10. This provides empirical verification of
the effectiveness of our unified framework and the robustness of the CUOLR algorithm.

B.2 State Representation Ablation Experiments

In this section, we present an ablation study focusing on the state embedding utilized in our algorithm,
CUOLR. We compare the effectiveness of our proposed multi-head self-attention, augmented with
positional embedding, against several heuristic hard-coded baselines for state embedding. These

15

Table 6: Performance comparison with different click models on Yahoo! LETOR set1. "*" and "**"
indicate statistically significant improvement (p-value < 0.05 and p-value < 0.01 respectively) over
the best baseline for each metric respectively.

CLICK MODEL ALG ERR@3 ERR@5 ERR@10 nDCG@3 nDCG@5 nDCG@10

PBM

DLA 0.418 0.439 0.455 0.669 0.691 0.742
CM-IPW 0.418 0.440 0.456 0.669 0.692 0.743

IPW 0.424 0.446 0.462 0.678 0.700 0.748
CUOLR(CQL) 0.437∗∗ 0.458∗∗ 0.473∗∗ 0.678 0.700 0.753∗

CUOLR(SAC) 0.437∗∗ 0.459∗∗ 0.478∗∗ 0.674 0.700 0.753∗∗

CASCADE

DLA 0.420 0.441 0.457 0.668 0.690 0.741
CM-IPW 0.422 0.444 0.460 0.674 0.696 0.745

IPW 0.420 0.442 0.457 0.668 0.690 0.740
CUOLR(CQL) 0.436∗∗ 0.459∗∗ 0.479∗∗ 0.668 0.696 0.748
CUOLR(SAC) 0.440∗∗ 0.461∗ 0.478∗∗ 0.670 0.696 0.748

UBM

DLA 0.426 0.448 0.463 0.687 0.708 0.756
CM-IPW 0.415 0.437 0.453 0.664 0.689 0.740

IPW 0.427 0.449 0.464 0.686 0.708 0.756
CUOLR(CQL) 0.435∗∗ 0.457∗∗ 0.473∗∗ 0.679 0.704 0.756
CUOLR(SAC) 0.435∗∗ 0.458∗∗ 0.473∗∗ 0.675 0.700 0.754

DCM

DLA 0.422 0.444 0.459 0.673 0.696 0.745
CM-IPW 0.426 0.447 0.463 0.683 0.704 0.752

IPW 0.422 0.444 0.459 0.674 0.697 0.746
CUOLR(CQL) 0.437∗∗ 0.461∗∗ 0.474∗∗ 0.676 0.699 0.753
CUOLR(SAC) 0.436∗∗ 0.461∗∗ 0.475∗∗ 0.675 0.703 0.755

CCM

DLA 0.427 0.449 0.464 0.685 0.707 0.754
CM-IPW 0.416 0.438 0.453 0.659 0.684 0.736

IPW 0.429 0.450 0.465 0.689 0.710 0.757
CUOLR(CQL) 0.438∗∗ 0.462∗∗ 0.478∗∗ 0.681 0.704 0.758
CUOLR(SAC) 0.437∗∗ 0.460∗∗ 0.476∗∗ 0.680 0.706 0.759

LOGGING 0.359 0.385 0.403 0.595 0.630 0.693
ORACLE 0.440 0.462 0.486 0.720 0.739 0.781

baselines include utilizing only positional information (POS), concatenating previous document in-
formation (PREDOC), and a combination of positional and document information (POS+PREDOC).
The evaluation is performed on the Yahoo dataset, and the results are summarized in Table 8. Con-
sistent with expectations, for position-based models (PBM), the most effective approach is utilizing
only the positional information. Conversely, for cascade models (CASCADE), only considering
the previous document information gives the best performance. In the case of more complicated
models, such as DCM, CCM, and UBM, where the click model relies on both position and previous
examinations, it becomes evident that incorporating a combination of positional information and
previous document information yields the highest performance. Among all of them, it is worth to
point out that our proposed state representation learning consistently attains comparable performance
to the best baseline. Notably, our method possesses the advantage of automatically learning the
optimal state representation, irrespective of the underlying assumptions of the click models.

B.3 Conservatism for Offline RL Ablation Experiments

In this section, we conduct an ablation study to investigate the influence of the hyperparameter α,
which governs the conservatism, in the CQL algorithm. Specifically, we examine its effects on the
Yahoo! dataset by varying α across a range of values: {0, 1e− 3, 5e− 3, 1e− 2, 5e− 2, 1e− 1, 5e−
1, 1e0, 5e0, 1e1, 5e1}. It is noteworthy that when α is set to 0, the CQL algorithm simplifies to the
SAC algorithm [19]. Remarkably, we find that the performance of CUOLR remains consistently
robust across the diverse α values, as long as they are not being restricted to be too close to the
logging policy (i.e., large α values). This consistency underscores the effectiveness of our method,
which demonstrates its ability to adapt to different underlying reinforcement learning (RL) algorithms.
Interestingly, in contrast to classical offline RL datasets studied in Kumar et al. [29], where the
conservatism parameter plays a substantial role, we observe that its impact is comparatively minor

16

Table 7: Performance comparison with different click models on MSLR-WEB10K. "*" and "**"
indicate statistically significant improvement (p-value < 0.05 and p-value < 0.01 respectively) over
the best baseline for each metric respectively.

CLICK MODEL ALG ERR@3 ERR@5 ERR@10 nDCG@3 nDCG@5 nDCG@10

PBM

DLA 0.230 0.256 0.278 0.343 0.356 0.384
CM-IPW 0.229 0.255 0.277 0.341 0.354 0.383

IPW 0.257 0.281 0.301 0.356 0.367 0.390
CUOLR(CQL) 0.257 0.281 0.303 0.369∗∗ 0.380∗∗ 0.406∗∗

CUOLR(SAC) 0.255 0.279 0.301 0.368∗∗ 0.379∗∗ 0.404∗∗

CASCADE

DLA 0.239 0.265 0.286 0.354 0.365 0.392
CM-IPW 0.259 0.283 0.304 0.367 0.378 0.403

IPW 0.232 0.257 0.279 0.347 0.358 0.387
CUOLR(CQL) 0.255 0.280 0.301 0.366 0.378 0.404
CUOLR(SAC) 0.255 0.279 0.301 0.368∗ 0.379 0.405∗

UBM

DLA 0.257 0.280 0.300 0.369 0.377 0.400
CM-IPW 0.253 0.276 0.297 0.354 0.362 0.386

IPW 0.258 0.281 0.301 0.359 0.367 0.390
CUOLR(CQL) 0.255 0.280 0.301 0.373∗∗ 0.384∗∗ 0.408∗∗

CUOLR(SAC) 0.260 0.284 0.306∗ 0.374∗ 0.384∗ 0.408∗

DCM

DLA 0.254 0.279 0.299 0.368 0.378 0.404
CM-IPW 0.259 0.284 0.304 0.367 0.379 0.402

IPW 0.256 0.278 0.299 0.354 0.363 0.387
CUOLR(CQL) 0.254 0.278 0.300 0.369 0.380 0.405
CUOLR(SAC) 0.254 0.278 0.300 0.367 0.378 0.403

CCM

DLA 0.252 0.275 0.295 0.347 0.356 0.379
CM-IPW 0.227 0.249 0.270 0.305 0.316 0.342

IPW 0.255 0.278 0.298 0.351 0.360 0.383
CUOLR(CQL) 0.255 0.280 0.301∗ 0.373∗∗ 0.384∗∗ 0.408∗∗

CUOLR(SAC) 0.260∗ 0.284∗∗ 0.305∗∗ 0.374∗∗ 0.383∗∗ 0.408∗∗

LOGGING 0.180 0.206 0.230 0.288 0.304 0.338
ORACLE 0.305 0.328 0.347 0.426 0.432 0.453

in the offline learning to rank dataset. This observation is worth further investigation for better
understanding the impact of conservatism in offline LTR settings.

Besides, To figure out the effect of conservatism, we do experiments on several click models on Yahoo!
dataset to compare the performance between simple SAC and CQL with the optimal conservative
parameter α. The optimal α is selected through grid search ranging from {1e − 3, 5e − 3, 1e −
2, 5e− 2, 1e− 1, 5e− 1, 1e0, 5e0, 1e1, 5e1}. The results are shown in Table 9. It’s obvious that the
performance of CQL with optimal α is consistently better than that of CQL, especially in the NDCG
metric. This improvement further illustrates the necessity of conservatism in Off-policy learning to
rank task.

B.4 Data Quality for Offline Reinforcement Learning to Rank

In this section, we conduct an ablation study to clarify the effect of data quality to the offline RL
algorithms. In usual cases, data quality is important to most offline algorithms, including the offline
RL algorithm. To verify the effect of data quality, we conduct experiments on the Web10k dataset
with different offline data. Specifically, on each click model, the logging policy is trained with
different portions of train data: 1) SVMRank trained with 1% train data; 2) SVMRank trained with
0.01% train data; 3) random policy without pre-training. Then the quality of the train data gathered
by the three logging policy decreases, and the performance of CQL on them is displayed in Table 10.
We find that the algorithm trained with data in better quality (first line for each click model) performs
significantly better than the other two. Besides, it’s interesting that the algorithm trained with random
logging data can’t even beat the logging policy trained with 1% train data, which further highlight the
significance of data quality.

17

...

𝑐!

𝑒! 𝑑!

𝑘!

𝑐"

𝑒" 𝑑"

𝑘"

𝑐#

𝑒# 𝑑#

𝑘#

CASCADE

𝑐!

𝑒! 𝑑!

𝑐"

𝑒" 𝑑"

𝑐#

𝑒# 𝑑# ...

PBM

𝑘! 𝑘" 𝑘#

...

𝑐!

𝑒! 𝑑!

𝑐"

𝑒" 𝑑"

𝑐#

𝑒# 𝑑#

DCM

𝑘! 𝑘" 𝑘#

...

𝑐!
𝑒! 𝑑!

𝑐"
𝑒" 𝑑"

𝑐#
𝑒# 𝑑#

CCM

𝑘! 𝑘" 𝑘#

𝑟!

𝑠! 𝑎!

𝑟"

𝑠" 𝑎"

𝑟#

𝑠# 𝑎# ...

MDP

𝑘! 𝑘" 𝑘#

𝑠$: state
𝑎$: action
𝑟$: reward

𝑒$: examination
𝑑$: document
𝑐$: click
𝑘$: rank/position

Figure 1: Graphical models of different click models and our MDP formulation about the learning to
rank problem.

C Click Model and MDP Formulation

In this section, we present a comprehensive overview of different click models employed in the paper,
namely PBM, CASCADE, DCM, CCM, and UBM. Additionally, we demonstrate the graphical
models associated with each click model and how they could be unified into the Markov Decision
Process (MDP) framework, as depicted in Figure 1.

PBM [24]. The position-based model is a model where the probability of clicking on an item
depends on both its identity and rank. The examination probability is rank-dependent only, i.e.,

χ(R, k) = χ(k).

CASCADE [12]. The cascade model assumes that the user scans a rank listR from top to bottom.
If a document at rank k is examined and clicked, the user stops browsing the remaining documents.
Otherwise, the user goes on to the next rank k + 1 with probability one. The first document d1
is always examined. The document at rank k will be examined if and only if the previous k − 1
documents are not clicked. Therefore we have:

χ(R, k) = Πk−1
i=1 (1− α(R(i))) .

DCM [48, 18]. The dependent click model assumes that the user examines the results from top
to bottom until an attractive result is found, P (Ek+1 = 1 | Ek = 1, Ck = 0) = 1, where Ek is the
examination indicator at rank k. After each click, there is a rank-dependent chance that the user is
unsatisfied, P (Ek+1 = 1 | Ck = 1) = λk. Therefore, we have:

χ(R, k) = Πk−1
i=1 (1− α(R(i)) · (1− λi)) .

CCM [17]. The click chain model (CCM) is a generalization of the dependent click model where
continuing to examine the results before a click is not deterministic, i.e. P (Ej+1 = 1 | Ej =

18

Table 8: Performance of CQL algorithm with different state embedding. The experiments are
conducted on Yahoo! set 1 and click models are PBM, CASCADE, UBM, DCM, and CCM

CLICK MODEL STATE EMBED ERR@3 ERR@5 ERR@10 nDCG@3 nDCG@5 nDCG@10

PBM

POS 0.417 0.439 0.455 0.668 0.691 0.742
PREDOC 0.413 0.435 0.451 0.657 0.682 0.734

POS+PREDOC 0.418 0.460 0.456 0.663 0.685 0.734
ATTENTION 0.437 0.459 0.478 0.674 0.700 0.753

CASCADE

POS 0.404 0.426 0.442 0.646 0.668 0.724
PREDOC 0.434 0.456 0.472 0.679 0.703 0.754

POS+PREDOC 0.432 0.453 0.470 0.664 0.686 0.740
ATTENTION 0.440 0.461 0.478 0.669 0.696 0.748

UBM

POS 0.420 0.442 0.458 0.678 0.700 0.747
PREDOC 0.410 0.433 0.449 0.666 0.691 0.743

POS+PREDOC 0.416 0.439 0.454 0.676 0.700 0.750
ATTENTION 0.435 0.457 0.473 0.679 0.704 0.756

DCM

POS 0.415 0.437 0.453 0.658 0.680 0.731
PREDOC 0.435 0.457 0.473 0.682 0.706 0.758

POS+PREDOC 0.439 0.461 0.477 0.687 0.709 0.758
ATTENTION 0.437 0.461 0.475 0.675 0.703 0.755

CCM

POS 0.421 0.443 0.458 0.678 0.701 0.748
PREDOC 0.420 0.443 0.459 0.677 0.702 0.754

POS+PREDOC 0.426 0.448 0.464 0.685 0.710 0.759
ATTENTION 0.437 0.460 0.476 0.680 0.706 0.759

ORACLE 0.440 0.462 0.486 0.720 0.739 0.781

Table 9: Comparison of SAC and CQL with optimal alpha on Yahoo. To show the impact of the
offline algorithm in off-policy learning to rank, we compare SAC and CQL with different degrees of
conservatism. We control the degree of conservatism via the parameter α (See details in Eq.5 in the
main paper). The αs range from {1e− 3, 5e− 3, 1e− 2, 5e− 2, 1e− 1, 5e− 1, 1e0, 5e0, 1e1, 5e1}
and we do grid search to find the optimal α.

CLICK MODEL ALG ERR@K NDCG@K
K=3 K=5 K=10 K=3 K=5 K=10

PBM SAC 0.437 0.459 0.478 0.674 0.700 0.753
CQL(optimal α) 0.437 0.460 0.478 0.692 0.715 0.766

CASCADE SAC 0.440 0.461 0.478 0.670 0.696 0.748
CQL(optimal α) 0.440 0.461 0.479 0.691 0.715 0.765

DCM SAC 0.436 0.461 0.475 0.675 0.703 0.755
CQL(optimal α) 0.439 0.461 0.477 0.694 0.718 0.767

CCM SAC 0.437 0.460 0.476 0.680 0.706 0.759
CQL(optimal α) 0.438 0.462 0.479 0.691 0.712 0.766

1, Cj = 0) = α1. The probability of continuing after a click is not position dependent, but relevance
dependent, P (Ej+1 | Cj = 1) = α2(1−Ri) +α3Ri, where Ri is the relevance of the ith document
in the rank list. Therefore, the examination probability at each position can be written as:

χ(R, k) = Πk−1
i=1 (1− α(R(i)) · (1− α2(1−R(i))− α3R(i))

UBM [13]. The user browsing model (UBM) is an extension of the PBM model with some elements
of the cascade model. The whole model is position-based, but for the examination probability, it
considers previous clicks. Specifically, the examination probability depends not only on the rank of
the document k, but also on the rank of the previously clicked document k′, which is modeled by a
set of parameters γkk′ , i.e. P (Ek = 1 | C1 = c1, . . . , Ck−1 = ck−1) = γkk′ , where k′ is the rank of
the previous clicked document or 0 if none of them was clicked, i.e. k′ = max{r ∈ {0, . . . , k− 1}} :

19

Table 10: Comparison of different logging policies on Web10k. On each click model, we compare
three different logging policies: SVMRank trained with 1% train data, SVMRank trained with 0.01%
train data, and random policy.

CLICK MODEL LOGGING ERR@K NDCG@K
K=3 K=5 K=10 K=3 K=5 K=10

PBM
por=1% 0.257 0.281 0.303 0.369 0.380 0.406

por=0.01% 0.214 0.239 0.262 0.324 0.339 0.367
rand 0.111 0.130 0.151 0.159 0.175 0.201

CASCADE
por=1% 0.255 0.280 0.301 0.366 0.378 0.404

por=0.01% 0.214 0.239 0.262 0.326 0.340 0.368
rand 0.117 0.136 0.157 0.163 0.180 0.208

DCM
por=1% 0.254 0.278 0.300 0.369 0.380 0.405

por=0.01% 0.212 0.238 0.260 0.324 0.338 0.367
rand 0.121 0.139 0.159 0.167 0.178 0.204

CCM
por=1% 0.255 0.280 0.301 0.373 0.384 0.408

por=0.01% 0.214 0.239 0.261 0.324 0.339 0.367
rand 0.123 0.142 0.162 0.163 0.179 0.208

cr = 1

χ(R, k) = γkk′

Zoghi et al. [63] showed that PBM and CM satisfied Assumption 3.1 where optimal ranking list leads
to optimal total clicks. In our future work, it would be interesting to show that other click models
also satisfy this assumption.

20

Figure 2: NDCG@10 and ERR@10 of CUOLR (with CQL) on Yahoo! dataset set 1, with different
conservative parameters αs. Each row is the performance of a metric (ERR, NDCG@3,5,10) on the
four click models (PBM, CASCADE, DCM, CCM).

21

	Introduction
	Related Work
	Reinforcement Learning to Rank: A Unified Formulation
	Preliminary
	Learning to Rank as Markov Decision Process
	Optimizing Rank List by Optimizing Policy

	Unified Off-policy Learning to Rank
	Experiments
	Setup
	Results

	Conclusion
	Experiment Details
	Dataset Statistics
	Implementation Details

	Additional Results
	Performance across Different Click Models
	State Representation Ablation Experiments
	Conservatism for Offline RL Ablation Experiments
	Data Quality for Offline Reinforcement Learning to Rank

	Click Model and MDP Formulation

